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1 Geometry of Projections and Classification of von Neu-
mann Algebras

1.1 Closed graph operators

Definition 1.1. A closed graph operator is a linear operator T : D(T ) → H, where
D(T ) ⊆ H is a dense subspace, such that the graph of T , GT = {(ξ, T ξ) : ξ ∈ D(T )} ⊆
H ×H, is closed (i.e. whenever ξn → 0 and Tξn → η, then η = 0).

Example 1.1. Let `2(N) have its usual orthonormal basis ξn. Now define T0(
∑
cnξn) =∑

ncnξn, which is defined onD(T0) = H0, the space of finite sums. Now considerGT0 ; there
exists some T such that GT = GT0 . The space of sequences

∑∞
n=1 cnξn with

∑∞
n=1 |ncn|2 <

∞ is D(T ).

1.2 More geometry of projections

Recall some definitions from last time:

Definition 1.2. e ∈ P (M) is abelian if eMe is abelian.

Definition 1.3. e ∈ P (M) is a finite projection if whenever f ≤ e and f ∼ e, f = e.

Definition 1.4. A von Neumann algebra M is finite if 1 is a finite projection (i.e. any
isometry is necessarily a unitary).

Definition 1.5. e ∈ P (M) is properly infinite if e has no direct summands in M that
are finite, i.e. if p ∈ P (M) ∩ Z(M) with pe finite, then pe = 0.

Lemma 1.1. Let e ≤ f ∈ P (M) be abelian. Then

1. e = z(e)f .

2. If z(e) ≤ z(f), then e ≺ f .

Remark 1.1. We always have that if e ≺ f , then z(e) ≤ z(f).
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Lemma 1.2. If e ∈ P (M) contains no abelian projection (i.e. if f ≤ e is abelian, f = 0),
then there exist e1, e2 ∈ P (M) such that e1 ∼ e2, and e1 + e2 = e.

Proof. Take maximal (with respect to inclusion) mutually orthonormal sets {ei}I , {fi}I
under e. We claim that

∑
i∈I ei +

∑
i∈I fi = e; if we call this p and e − p 6= 0, then

(e − p)M(e − p) is not abelian. Then there exists an e′0 ∼ f ′0 6= 0 that we can add to the
orthonormal sets, contradicting maximality.

Lemma 1.3. A projection e ∈ P (M) is properly infinite if and only if e =
∑∞

n=1 en with
en ∼ e.

Proof. Use Vold’s decomposition. Start by building a family {fn} of mutually orthogonal,
mutually equivalent operators. If, say, e =

∑
e0n with e0n ∼ e0m, then split N =

⋃∞
m=1Nm

with |Nm| =∞. Then define em =
∑

k∈Nk
e0k. This is equivalent to

∑
m∈N e

0
n = e.

Definition 1.6. A projection e ∈ P (M). is of countable type if when {ei}i∈I are
mutually orthogonal and ≤ e, then |I| is countable.

Example 1.2. B(`2(N)) only has projections of countable type, but B(`2(R)) has projec-
tions not of countable type.

Lemma 1.4. Let e, f ∈ P (M), let e be of countable type, and let f be properly infinite. If
z(e) ≤ z(f), then e ≺ f .

Proof. Take {ei}i∈I mutually orthogonal, ≤ e, and such that ei ≺ f for all i; take a
maximal such family with respect to inclusion. We claim that

∑
i ei = e. Indeed, if

p := e −
∑

i ei 6= 0, then if pMf 6= 0, we contradict maximality: taking x such that
pxf 6= 0, we get that `(pxf) ∼ r(pxf). If pMf = 0, then z(p) ≤ z(f) = 0. So I is
countable; that is, e =

∑
n en with en ≺ f for all n. But then by induction on n, one

builds projections fn ≤ f such that fn are mutually orthogonal and en ∼ fn. Now use the
previous lemma.

1.3 Classification of von Neumann algebras

Definition 1.7. A von Neumann algebra M is semifinite if 1M =
∨

i ei with ei finite.

Example 1.3. B(`2(N)) is semifinite.

Definition 1.8. A von Neumann algebra M is type I if 1M =
∨

i ei with ei abelian.

Example 1.4. B(`2(I)) is of type I for any I.

Definition 1.9. A von Neumann algebra M is type II if it is semifinite and has no abelian
projections.

So far in this course, we have no examples of type II von Neumann algebras.
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Definition 1.10. A von Neumann algebra M is type II has no finite projections.

We have no examples yet of this, either.

Definition 1.11. A von Neumann algebra M is type I finite if it is of type I and finite.
M is of type I infinite if it is of type I but has no central finite projection.

Example 1.5. B(`2(N)) is of type 1 finite. Type 1 infinite algebras looks like
⊕

i B(`2(Ji))⊗
L∞(Xi), where |Ji| =∞.

We can state similar definitions for type II algebras. Here is the key lemma:

Lemma 1.5. Let {ei} ⊆ P (M) be mutually orhogonal with mutually orthogonal central
supports z(ei).

1. If all ei are abelian, then
∑

i ei is abelian.

2. If all ei are finite, then
∑

i ei is finite.

Theorem 1.1. Let M be a von Neumann algebras. There exist p1, p2, p3, p4, p5 ∈ P (M)∩
Z(M) with

∑5
i=1 pi = 1 such that Mp1 is of type I finite, Mp2 is type I infinite, Mp3 is

type II1, Mp4 is type II infinite, and Mp5 is type III. So if M is a factor then it is either
isomorphic to Mn(C) for some n, B(`2(I)), a type I, and type II, or a type III.
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