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1 Geometry of Projections and Classification of von Neu-
mann Algebras

1.1 Closed graph operators

Definition 1.1. A closed graph operator is a linear operator 7' : D(T) — H, where
D(T) C H is a dense subspace, such that the graph of ', Gr = {(§,T¢) : £ € D(T)} C
H x H, is closed (i.e. whenever &, — 0 and T, — 7, then n = 0).

Example 1.1. Let ¢2(N) have its usual orthonormal basis &,. Now define Tp(Y. ¢,&,) =
> nepép, which is defined on D(Ty) = Hy, the space of finite sums. Now consider G,; there
exists some 7" such that Gy = Gr,,. The space of sequences Y % | ¢,,&, with 0% | |nc,|? <
oo is D(T).

1.2 More geometry of projections

Recall some definitions from last time:

Definition 1.2. e € P(M) is abelian if eMe is abelian.

Definition 1.3. e € P(M) is a finite projection if whenever f <eand f ~e, f =e.

Definition 1.4. A von Neumann algebra M is finite if 1 is a finite projection (i.e. any
isometry is necessarily a unitary).

Definition 1.5. e € P(M) is properly infinite if e has no direct summands in M that
are finite, i.e. if p € P(M) N Z(M) with pe finite, then pe = 0.

Lemma 1.1. Let e < f € P(M) be abelian. Then
1. e=z(e)f.
2. If z(e) < z(f), thene < f.
Remark 1.1. We always have that if e < f, then z(e) < z(f).



Lemma 1.2. Ife € P(M) contains no abelian projection (i.e. if f < e is abelian, f =0),
then there exist ey, ea € P(M) such that ey ~ e, and e1 + eg = e.

Proof. Take maximal (with respect to inclusion) mutually orthonormal sets {e;}r,{fi}s
under e. We claim that ), ;e; + > ../ fi = e; if we call this p and e — p # 0, then
(e —p)M(e — p) is not abelian. Then there exists an e, ~ f # 0 that we can add to the
orthonormal sets, contradicting maximality. O
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Lemma 1.3. A projection e € P(M) is properly infinite if and only if e = )
en ~ €.

Proof. Use Vold’s decomposition. Start by building a family {f,,} of mutually orthogonal,
mutually equivalent operators. If, say, e = Y €O with €2 ~ €Y, then split N = [J°°_, Ny,

with |[Np,| = co. Then define ey, = > oy, e)). This is equivalent to Y.,y eh =e. O

Definition 1.6. A projection e € P(M). is of countable type if when {e;};c; are
mutually orthogonal and < e, then |I| is countable.

Example 1.2. B(¢?(N)) only has projections of countable type, but B(£?(R)) has projec-
tions not of countable type.

Lemma 1.4. Let e, f € P(M), let e be of countable type, and let f be properly infinite. If
z(e) < z(f), thene < f.

Proof. Take {e;};c; mutually orthogonal, < e, and such that e; < f for all i; take a
maximal such family with respect to inclusion. We claim that ) . e; = e. Indeed, if
p:i=e—y e # 0, then if pMf # 0, we contradict maximality: taking x such that
pxf # 0, we get that {(pxf) ~ r(pzf). If pMf = 0, then z(p) < 2(f) = 0. So I is
countable; that is, e = > e, with e, < f for all n. But then by induction on n, one
builds projections f,, < f such that f,, are mutually orthogonal and e,, ~ f,. Now use the
previous lemma. O

1.3 Classification of von Neumann algebras

Definition 1.7. A von Neumann algebra M is semifinite if 1, = \/Z e; with e; finite.
Example 1.3. B(/%(N)) is semifinite.

Definition 1.8. A von Neumann algebra M is type 1 if 1;; = \/z e; with e; abelian.
Example 1.4. B((*(I)) is of type I for any I.

Definition 1.9. A von Neumann algebra M is type II if it is semifinite and has no abelian
projections.

So far in this course, we have no examples of type II von Neumann algebras.



Definition 1.10. A von Neumann algebra M is type II has no finite projections.
We have no examples yet of this, either.

Definition 1.11. A von Neumann algebra M is type I finite if it is of type I and finite.
M is of type I infinite if it is of type I but has no central finite projection.

Example 1.5. B(¢*(N)) is of type 1 finite. Type 1 infinite algebras looks like @, B(¢(J;))®
L>°(X;), where |J;| = oc.

We can state similar definitions for type II algebras. Here is the key lemma:

Lemma 1.5. Let {e;} C P(M) be mutually orhogonal with mutually orthogonal central
supports z(e;).

1. If all e; are abelian, then ), e; is abelian.
2. If all e; are finite, then ), e; is finite.

Theorem 1.1. Let M be a von Neumann algebras. There exist p1,p2, ps,pa,ps € P(M)N
Z(M) with Z?Zl p; = 1 such that Mp; is of type I finite, Mpo is type I infinite, Mps is
type 111, Mpy is type Il infinite, and Mps is type I1I. So if M is a factor then it is either
isomorphic to M,,(C) for some n, B(¢*(I)), a type I, and type II, or a type IIL.
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