Math 259A Lecture 15 Notes

Daniel Raban

November 1, 2019

1 Geometry of Projections and Classification of von Neumann Algebras

1.1 Closed graph operators

Definition 1.1. A closed graph operator is a linear operator $T : D(T) \to H$, where $D(T) \subseteq H$ is a dense subspace, such that the graph of T, $G_T = \{(\xi, T\xi) : \xi \in D(T)\} \subseteq H \times H$, is closed (i.e. whenever $\xi_n \to 0$ and $T\xi_n \to \eta$, then $\eta = 0$).

Example 1.1. Let $\ell^2(\mathbb{N})$ have its usual orthonormal basis ξ_n . Now define $T_0(\sum c_n \xi_n) = \sum nc_n\xi_n$, which is defined on $D(T_0) = H_0$, the space of finite sums. Now consider \overline{G}_{T_0} ; there exists some T such that $G_T = \overline{G}_{T_0}$. The space of sequences $\sum_{n=1}^{\infty} c_n\xi_n$ with $\sum_{n=1}^{\infty} |nc_n|^2 < \infty$ is D(T).

1.2 More geometry of projections

Recall some definitions from last time:

Definition 1.2. $e \in P(M)$ is abelian if eMe is abelian.

Definition 1.3. $e \in P(M)$ is a finite projection if whenever $f \leq e$ and $f \sim e, f = e$.

Definition 1.4. A von Neumann algebra M is **finite** if 1 is a finite projection (i.e. any isometry is necessarily a unitary).

Definition 1.5. $e \in P(M)$ is **properly infinite** if e has no direct summands in M that are finite, i.e. if $p \in P(M) \cap Z(M)$ with pe finite, then pe = 0.

Lemma 1.1. Let $e \leq f \in P(M)$ be abelian. Then

1.
$$e = z(e)f$$
.

2. If $z(e) \leq z(f)$, then $e \prec f$.

Remark 1.1. We always have that if $e \prec f$, then $z(e) \leq z(f)$.

Lemma 1.2. If $e \in P(M)$ contains no abelian projection (i.e. if $f \le e$ is abelian, f = 0), then there exist $e_1, e_2 \in P(M)$ such that $e_1 \sim e_2$, and $e_1 + e_2 = e$.

Proof. Take maximal (with respect to inclusion) mutually orthonormal sets $\{e_i\}_I, \{f_i\}_I$ under e. We claim that $\sum_{i \in I} e_i + \sum_{i \in I} f_i = e$; if we call this p and $e - p \neq 0$, then (e - p)M(e - p) is not abelian. Then there exists an $e'_0 \sim f'_0 \neq 0$ that we can add to the orthonormal sets, contradicting maximality.

Lemma 1.3. A projection $e \in P(M)$ is properly infinite if and only if $e = \sum_{n=1}^{\infty} e_n$ with $e_n \sim e$.

Proof. Use Vold's decomposition. Start by building a family $\{f_n\}$ of mutually orthogonal, mutually equivalent operators. If, say, $e = \sum e_n^0$ with $e_n^0 \sim e_m^0$, then split $\mathbb{N} = \bigcup_{m=1}^{\infty} N_m$ with $|N_m| = \infty$. Then define $e_m = \sum_{k \in N_k} e_k^0$. This is equivalent to $\sum_{m \in \mathbb{N}} e_n^0 = e$. \Box

Definition 1.6. A projection $e \in P(M)$. is of **countable type** if when $\{e_i\}_{i \in I}$ are mutually orthogonal and $\leq e$, then |I| is countable.

Example 1.2. $\mathcal{B}(\ell^2(\mathbb{N}))$ only has projections of countable type, but $\mathcal{B}(\ell^2(\mathbb{R}))$ has projections not of countable type.

Lemma 1.4. Let $e, f \in P(M)$, let e be of countable type, and let f be properly infinite. If $z(e) \leq z(f)$, then $e \prec f$.

Proof. Take $\{e_i\}_{i \in I}$ mutually orthogonal, $\leq e$, and such that $e_i \prec f$ for all i; take a maximal such family with respect to inclusion. We claim that $\sum_i e_i = e$. Indeed, if $p := e - \sum_i e_i \neq 0$, then if $pMf \neq 0$, we contradict maximality: taking x such that $pxf \neq 0$, we get that $\ell(pxf) \sim r(pxf)$. If pMf = 0, then $z(p) \leq z(f) = 0$. So I is countable; that is, $e = \sum_n e_n$ with $e_n \prec f$ for all n. But then by induction on n, one builds projections $f_n \leq f$ such that f_n are mutually orthogonal and $e_n \sim f_n$. Now use the previous lemma.

1.3 Classification of von Neumann algebras

Definition 1.7. A von Neumann algebra M is semifinite if $1_M = \bigvee_i e_i$ with e_i finite.

Example 1.3. $\mathcal{B}(\ell^2(\mathbb{N}))$ is semifinite.

Definition 1.8. A von Neumann algebra M is type I if $1_M = \bigvee_i e_i$ with e_i abelian.

Example 1.4. $\mathcal{B}(\ell^2(I))$ is of type I for any I.

Definition 1.9. A von Neumann algebra M is **type II** if it is semifinite and has no abelian projections.

So far in this course, we have no examples of type II von Neumann algebras.

Definition 1.10. A von Neumann algebra M is type II has no finite projections.

We have no examples yet of this, either.

Definition 1.11. A von Neumann algebra M is **type I finite** if it is of type I and finite. M is of **type I infinite** if it is of type I but has no central finite projection.

Example 1.5. $\mathcal{B}(\ell^2(\mathbb{N}))$ is of type 1 finite. Type 1 infinite algebras looks like $\bigoplus_i \mathcal{B}(\ell^2(J_i)) \otimes L^{\infty}(X_i)$, where $|J_i| = \infty$.

We can state similar definitions for type II algebras. Here is the key lemma:

Lemma 1.5. Let $\{e_i\} \subseteq P(M)$ be mutually orthogonal with mutually orthogonal central supports $z(e_i)$.

1. If all e_i are abelian, then $\sum_i e_i$ is abelian.

2. If all e_i are finite, then $\sum_i e_i$ is finite.

Theorem 1.1. Let M be a von Neumann algebras. There exist $p_1, p_2, p_3, p_4, p_5 \in P(M) \cap Z(M)$ with $\sum_{i=1}^5 p_i = 1$ such that Mp_1 is of type I finite, Mp_2 is type I infinite, Mp_3 is type II₁, Mp_4 is type II infinite, and Mp_5 is type III. So if M is a factor then it is either isomorphic to $M_n(\mathbb{C})$ for some $n, \mathcal{B}(\ell^2(I))$, a type I, and type II, or a type III.